|
|
Публикации в базе данных Math-Net.Ru |
Цитирования |
|
2023 |
1. |
А. Т. Фоменко, В. В. Ведюшкина, “Биллиарды и интегрируемые системы”, УМН, 78:5(473) (2023), 93–176 ; A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954 |
2
|
2. |
В. В. Ведюшкина, С. Е. Пустовойтов, “Классификация слоений Лиувилля интегрируемых топологических биллиардов в магнитном поле”, Матем. сб., 214:2 (2023), 23–57 ; V. V. Vedyushkina, S. E. Pustovoitov, “Classification of Liouville foliations of integrable topological billiards in magnetic fields”, Sb. Math., 214:2 (2023), 166–196 |
3
|
|
2022 |
3. |
В. В. Ведюшкина, В. А. Кибкало, “Биллиардные книжки малой сложности и реализация слоений Лиувилля интегрируемых систем”, Чебышевский сб., 23:1 (2022), 53–82 |
4
|
4. |
А. Т. Фоменко, В. В. Ведюшкина, “Эволюционные силовые биллиарды”, Изв. РАН. Сер. матем., 86:5 (2022), 116–156 ; A. T. Fomenko, V. V. Vedyushkina, “Evolutionary force billiards”, Izv. Math., 86:5 (2022), 943–979 |
3
|
5. |
В. В. Ведюшкина, В. Н. Завьялов, “Реализация геодезических потоков с линейным интегралом биллиардами с проскальзыванием”, Матем. сб., 213:12 (2022), 31–52 ; V. V. Vedyushkina, V. N. Zav'yalov, “Realization of geodesic flows with a linear first integral by billiards with slipping”, Sb. Math., 213:12 (2022), 1645–1664 |
3
|
6. |
В. В. Ведюшкина, А. И. Скворцов, “Топология интегрируемого бильярда в эллипсе на плоскости Минковского с гуковским потенциалом”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2022, № 1, 8–19 ; V. V. Vedyushkina, A. I. Skvortsov, “Topology of integrable billiard in an ellipse on the Minkowski plane with the Hooke potential”, Moscow University Mathematics Bulletin, 77:1 (2022), 7–19 |
4
|
|
2021 |
7. |
В. В. Ведюшкина, В. А. Кибкало, С. Е. Пустовойтов, “Реализация фокусных особенностей интегрируемых систем биллиардными книжками с потенциалом Гука”, Чебышевский сб., 22:5 (2021), 44–57 |
3
|
8. |
В. В. Ведюшкина, А. Т. Фоменко, “Силовые эволюционные биллиарды и биллиардная эквивалентность случая Эйлера и случая Лагранжа”, Докл. РАН. Матем., информ., проц. упр., 496 (2021), 5–9 ; V. V. Vedyushkina, A. T. Fomenko, “Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases”, Dokl. Math., 103:1 (2021), 1–4 |
7
|
9. |
В. В. Ведюшкина, “Топологический тип изоэнергетических поверхностей биллиардных книжек”, Матем. сб., 212:12 (2021), 3–19 ; V. V. Vedyushkina, “Topological type of isoenergy surfaces of billiard books”, Sb. Math., 212:12 (2021), 1660–1674 |
6
|
10. |
В. В. Ведюшкина, И. С. Харчева, “Биллиардные книжки реализуют все базы слоений Лиувилля интегрируемых гамильтоновых систем”, Матем. сб., 212:8 (2021), 89–150 ; V. V. Vedyushkina, I. S. Kharcheva, “Billiard books realize all bases of Liouville foliations of integrable Hamiltonian systems”, Sb. Math., 212:8 (2021), 1122–1179 |
12
|
11. |
В. В. Ведюшкина, “Траекторные инварианты плоских бильярдов, ограниченных дугами софокусных квадрик и содержащих фокусы”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2021, № 4, 48–51 ; V. V. Vedyushkina, “Orbital invariants of flat billiards bounded by arcs of confocal quadrics and containing focuses”, Moscow University Mathematics Bulletin, 76:4 (2021), 177–180 |
3
|
12. |
В. В. Ведюшкина, “Локальное моделирование бильярдами слоений Лиувилля: реализация реберных инвариантов”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2021, № 2, 28–32 ; V. V. Vedyushkina, “Local modeling of Liouville foliations by billiards: implementation of edge invariants”, Moscow University Mathematics Bulletin, 76:2 (2021), 60–64 |
9
|
|
2020 |
13. |
В. В. Ведюшкина, В. А. Кибкало, А. Т. Фоменко, “Топологическое моделирование интегрируемых систем биллиардами: реализация числовых инвариантов”, Докл. РАН. Матем., информ., проц. упр., 493 (2020), 9–12 ; V. V. Vedyushkina, V. A. Kibkalo, A. T. Fomenko, “Topological modeling of integrable systems by billiards: realization of numerical invariants”, Dokl. Math., 102:1 (2020), 269–271 |
12
|
14. |
В. В. Ведюшкина, “Интегрируемые биллиарды реализуют торические слоения на линзовых пространствах и 3-торе”, Матем. сб., 211:2 (2020), 46–73 ; V. V. Vedyushkina, “Integrable billiard systems realize toric foliations on lens spaces and the 3-torus”, Sb. Math., 211:2 (2020), 201–225 |
12
|
15. |
В. В. Ведюшкина, В. А. Кибкало, “Реализация бильярдами числового инварианта расслоения Зейферта интегрируемых систем”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2020, № 4, 22–28 ; V. V. Vedyushkina, V. A. Kibkalo, “Realization of numeriсal invariant of the Siefert bundle of integrable systems by billiards”, Moscow University Mathematics Bulletin, 75:4 (2020), 161–168 |
16
|
16. |
В. В. Ведюшкина, “Слоение Лиувилля бильярдной книжки, моделирующей случай Горячева–Чаплыгина”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2020, № 1, 64–68 ; V. V. Vedyushkina, “The Liouville foliation of the billiard book modelling the Goryachev–Chaplygin case”, Moscow University Mathematics, 75:1 (2020), 42–46 |
14
|
|
2019 |
17. |
В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые геодезические потоки на ориентируемых двумерных поверхностях и топологические биллиарды”, Изв. РАН. Сер. матем., 83:6 (2019), 63–103 ; V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83:6 (2019), 1137–1173 |
25
|
18. |
В. В. Ведюшкина, “Инварианты Фоменко–Цишанга невыпуклых топологических биллиардов”, Матем. сб., 210:3 (2019), 17–74 ; V. V. Vedyushkina, “The Fomenko–Zieschang invariants of nonconvex topological billiards”, Sb. Math., 210:3 (2019), 310–363 |
26
|
19. |
A. T. Fomenko, V. V. Vedyushkina, “Singularities of integrable Liouville systems, reduction of integrals to lower degree and topological billiards: recent results”, Theor. Appl. Mech., 46:1 (2019), 47–63 |
4
|
20. |
А. Т. Фоменко, В. В. Ведюшкина, “Бильярды и интегрируемость в геометрии и физике. Новый взгляд и новые возможности”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2019, № 3, 15–25 ; A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrability in geometry and physics. New scope and new potential”, Moscow University Mathematics Bulletin, 74:3 (2019), 98–107 |
22
|
|
2018 |
21. |
В. В. Ведюшкина, А. Т. Фоменко, И. С. Харчева, “Моделирование невырожденных бифуркаций замыканий решений интегрируемых систем с двумя степенями свободы интегрируемыми топологическими биллиардами”, Докл. РАН, 479:6 (2018), 607–610 ; V. V. Vedyushkina, A. T. Fomenko, I. S. Kharcheva, “Modeling nondegenerate bifurcations of closures of solutions for integrable systems with two degrees of freedom by integrable topological billiards”, Dokl. Math., 97:2 (2018), 174–176 |
20
|
22. |
В. В. Ведюшкина, “Слоение Лиувилля невыпуклых топологических биллиардов”, Докл. РАН, 478:1 (2018), 7–11 ; V. V. Vedyushkina, “The Liouville foliation of nonconvex topological billiards”, Dokl. Math., 97:1 (2018), 1–5 |
6
|
23. |
В. В. Ведюшкина, И. С. Харчева, “Биллиардные книжки моделируют все трехмерные бифуркации интегрируемых гамильтоновых систем”, Матем. сб., 209:12 (2018), 17–56 ; V. V. Vedyushkina, I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727 |
38
|
24. |
В. В. Ведюшкина, “Инварианты Фоменко–Цишанга топологических бильярдов, ограниченных софокусными параболами”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2018, № 4, 22–28 ; V. V. Vedyushkina, “Fomenko–Zieschang invariants of topological billiards bounded by confocal parabolas”, Moscow University Mathematics Bulletin, 73:4 (2018), 150–155 |
4
|
|
2017 |
25. |
В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые топологические биллиарды и эквивалентные динамические системы”, Изв. РАН. Сер. матем., 81:4 (2017), 20–67 ; V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733 |
50
|
26. |
В. В. Ведюшкина, А. О. Иванов, А. А. Тужилин, А. Т. Фоменко, “Компьютерные модели в геометрии и динамике”, Интеллектуальные системы. Теория и приложения, 21:1 (2017), 164–191 |
1
|
|
2015 |
27. |
В. В. Фокичева, “Топологическая классификация биллиардов в локально плоских областях, ограниченных дугами софокусных квадрик”, Матем. сб., 206:10 (2015), 127–176 ; V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507 |
57
|
|
2014 |
28. |
В. В. Фокичева, “Классификация биллиардных движений в областях, ограниченных софокусными параболами”, Матем. сб., 205:8 (2014), 139–160 ; V. V. Fokicheva, “Classification of billiard motions in domains bounded by confocal parabolas”, Sb. Math., 205:8 (2014), 1201–1221 |
26
|
29. |
В. В. Фокичева, “Описание особенностей системы бильярда в областях, ограниченных софокусными эллипсами или гиперболами”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2014, № 4, 18–27 ; V. V. Fokicheva, “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow University Mathematics Bulletin, 69:4 (2014), 148–158 |
30
|
|
2012 |
30. |
В. В. Фокичева, “Описание особенностей системы “бильярд в эллипсе””, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2012, № 5, 31–34 ; V. V. Fokicheva, “Description of singularities for system “billiard in an ellipse””, Moscow University Mathematics Bulletin, 67:5-6 (2012), 217–220 |
22
|
|